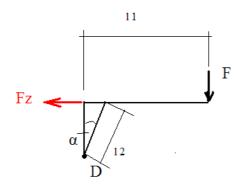
Lösungen zur Festigkeitsberechnung


1) Beispielaufgabe Zugkraft /-spannung

geg.: F = 50 kN; $l_1 = 80 \text{ mm}$; $l_2 = 25 \text{ mm}$; d = 1.5 mm; $\alpha = 20^{\circ}$

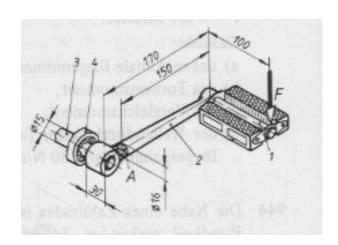
ges.: a) Zugkraft F_z

b) Zugspannung im Bowdenzugdraht

Freikörperbild:

a)
$$\sum M_{b(D)} = 0 = F_z \cdot \cos \alpha - F \cdot l_1$$

$$F_z = \frac{F \cdot l_1}{l_2 \cdot \cos \alpha} = \frac{50N \cdot 80mm}{25mm \cdot \cos 20^\circ}$$
$$F_z = 170.3 \text{ N}$$


b)
$$\sigma_{vorh} = \frac{F_z}{S} = \frac{4 \cdot F_z}{\pi \cdot d^2} = \frac{4 \cdot 170,3N}{\pi \cdot 2,25mm^2}$$

 $\underline{\sigma_{vorh}} = 96,4 \text{ N} / \text{mm}^2$

2) Beispielaufgabe Vergleichsspannung

geg.: F = 800 N; $\sigma_{bw} = 600 \text{ N} / \text{mm}^2 \text{ div. Längen s. Skizze}$

ges.: a) $\sigma_{b \text{ vorh}}$ in A

- b) v_{vorh}
- c) τ_t in A
- d) σ_v in A wenn σ_b und τ_t schwellend wirken
- e) tatsächliches υ_{vorh}
- f) $\sigma_{b \text{ vorh}}$ in Welle 3 an Lager 4
- g) τ_t in Welle 3 an Lager 4
- h)) σ_v in Welle 3 wenn σ_b wechselnd und τ_t schwellend wirken

a)
$$\sigma_{bvorh} = \frac{M_b}{W_b} = \frac{800N \cdot 150mm}{\frac{\pi}{32} (16mm)^3}$$

$$\sigma_{bvorh} = 298,4 \frac{N}{mm^2}$$

b)
$$v_{vorh} = \frac{\sigma_{bw}}{\sigma_{bvorh}} = \frac{600 \frac{N}{mm^2}}{298, 4 \frac{N}{mm^2}}$$

$$v_{vorh} \approx 2$$

c)
$$\tau_{t} = \frac{T}{W_{p}} = \frac{800N \cdot 100mm}{\frac{\pi}{16} (16mm)^{3}}$$

$$\tau_{\scriptscriptstyle t} = 99.5 \frac{N}{mm^2}$$

d) GEH, $\alpha_0 = 1$

$$\sigma_{v} = \sqrt{\sigma_{b}^{2} + 3 \cdot (\alpha_{0} \cdot \tau_{t})^{2}} = \sqrt{298,4^{2} + 3 \cdot 99,5^{2}} \frac{N}{mm^{2}} \qquad \sigma_{v} = 344 \frac{N}{mm^{2}}$$

$$\sigma_{v} = 344 \frac{N}{mm^2}$$

e)
$$v_{vorh} = \frac{\sigma_{bw}}{\sigma_{v}} = \frac{600 \frac{N}{mm^{2}}}{344 \frac{N}{mm^{2}}}$$

$$v_{vorh} = 1,7$$

f)
$$\sigma_{bvorh} = \frac{M_b}{W_b} = \frac{800N \cdot 130mm}{\frac{\pi}{32} (15mm)^3}$$

$$\sigma_{vorh} = 314 \frac{N}{mm^2}$$

g)
$$\tau_{tvorh} = \frac{T}{W_p} = \frac{800N \cdot 170mm}{\frac{\pi}{16} (15mm)^3}$$

$$\tau_{tvorh} = 205,23 \frac{N}{mm^2}$$

h) GEH, $\alpha_0 = 0.7$

$$\sigma_{v} = \sqrt{\sigma_{b}^{2} + 3 \cdot (\alpha_{0} \cdot \tau_{t})^{2}} = \sqrt{314^{2} + 3 \cdot (0.7 \cdot 205.23)^{2}} \frac{N}{mm^{2}} \qquad \sigma_{v} = 400.64 \frac{N}{mm^{2}}$$

$$\sigma_{v} = 400,64 \frac{N}{mm^2}$$