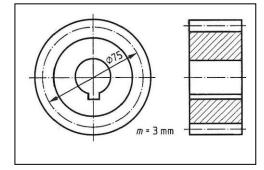

Aufgaben zum Zahntrieb

1) Abmessungen am Zahnrad

Zeichnen und berechnen Sie:

- Legen Sie den Mittelpunkt des Zahnrades fest.
- b) Ermitteln Sie mit dem Maßstab den Kopfkreisdurchmesser da und den Modul m (genormter Wert).



- c) Berechnen Sie den Teilkreisdurchmesser d und die Teilung p.
- d) Geben Sie folgende Abmessungen an: m, da, d, h, d_f und p

2) Zahnrad

Eine unvollständige Zahnradzeichnung ist zu ergänzen.

- a) Zähnezahl z
- b) Kopfkreisdurchmesser da
- c) Frästiefe h bei einem Kopfspiel von $c=\frac{1}{5}m$.

3) Zahnrad

An einem schadhaften Zahnrad lassen sich folgende Maße ermitteln: z = 27, $d_a = 72,5$ mm. Berechnen Sie:

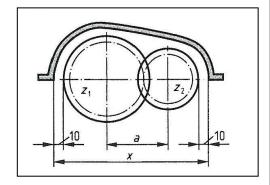
- a) Modul m
- b) Teilkreisdurchmesser d
- c) Frästiefe h bei c = $\frac{1}{6}$ m
- d) Achsabstand zu einem Zahnrad mir $z_2 = 48$

4) Zahnradpumpe

Von einer innenverzahnten Zahnradpumpe sind der Modul m = 4mm und der Kopfkreisdurchmesser des Antriebsritzels mit da = 60mm bekannt. Berechnen Sie:

- a) Die Zähnezahl des Ritzels
- b) Den Teilkreisdurchmesser d des Ritzels
- c) Den Achsabstand, wenn der Innenzahnkranz z2 = 24 Zähne hat.

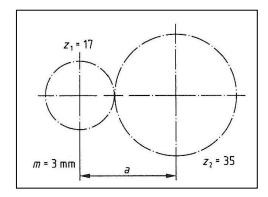
5) Zahnrad


Ein Zahnrad wurde zerstört. Am Bruchstück wurden 18 Zähne auf einem Teilumfang von 135° gezählt. Der Modul ist m = 5mm. Berechnen Sie:

- a) Die Zähnezahl des ganzen Zahnrades
- b) Den Kopfkreisdurchmesser
- c) Die Frästiefe bei einem Kopfspiel von $c = \frac{1}{5} m$

6) Zahntrieb

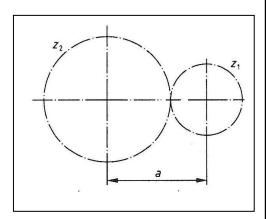
Zwei Zahnräder sind im Abstand von a = 82,5 mm im Eingriff. Der Modul ist m = 2,5 mm. Das getriebene Rad hat z_2 = 24 Zähne. Berechnen sie folgende werte:


- a) Die Zähnezahl z1
- b) Die Teilkreisdurchmesser d1 und d2
- Die lichte Weite x der Abdeckhaube, wenn der Abstand zu den R\u00e4dern je 10 mm betragen soll.

7) Zahnradpaar

Nachfolgende Werte berechnen:

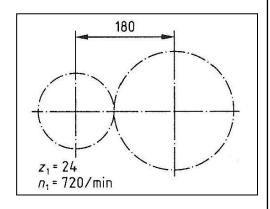
- a) Den Teilkreisdurchmesser beider Zahnräder
- b) Den Kopfkreisdurchmesser beider Räder
- c) Den Achsabstand



8) Zahnradabmessungen

Von einem Zahnradpaar sind bekannt:

Kopfkreisdurchmesser von Rad 1 mit d_a = 81 mm, Zähnezahl z_1 = 34 und Achsabstand a = 90 mm. Berechnen Sie für das Zahnrad 2:

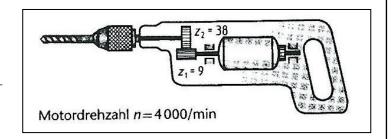

- a) Den Modul m
- b) Die Zähnezahl z₂
- c) Den Teilkreisdurchmesser d2

9) Zahntrieb

Bei diesem Getriebe liegt ein Übersetzungsverhältnis von 3:2 vor. Berechnen Sie:

- a) Die Umdrehungsfrequenz (Drehzahl) n2
- b) Die Zähnezahl z2
- c) Den Modul m
- d) Die Teilkreisdurchmesser

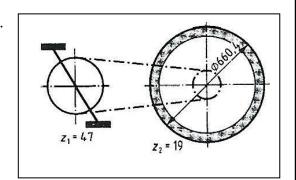
10) Kupplungsrädergetriebe


Für das Getriebe sind gegeben die Enddrehzahlen n_{e1} = 700 min⁻¹ und n_{e2} = 375 min⁻¹. Berechnen Sie:

- a) Die Übersetzungsverhältnisse
- b) Die Zähnezahlen z₁ und z₃
- c) Den Achsabstand wenn der Modul m = 3mm ist

11) Handbohrmaschine

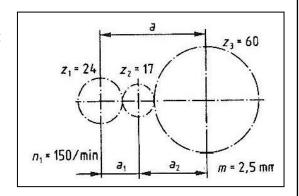
Für die Handbohrmaschine sollen folgende Werte berechnet werden. Der Motor hat eine Drehzahl von n=4000 min⁻¹



- a) Drehzahl der Bohrspindel?
- b) Schnittgeschwindigkeit eines Bohrers von 8mm Durchmesser?
- c) Schnittgeschwindigkeit, wenn bei starker Belastung die Motordrehzahl auf 3100 min⁻¹ sinkt?

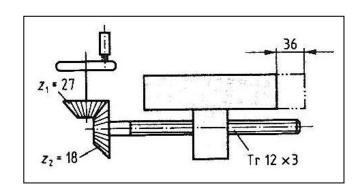
12) Fahrrad

Am Fahrrad müssen folgende Werte berechnet werden.


- a) Das Übersetzungsverhältnis?
- b) Die Drehzahl des Hinterrades, wenn eine Geschwindigkeit 24 $\frac{km}{h}$ gefahren wird?
- c) Die Drehzahl der Pedalachse?

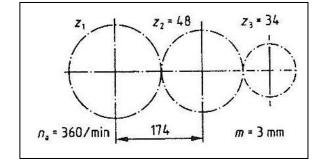
13) Zwischenrad

An diesem Getriebe müssen folgende Werte berechnet werden:


- a) Die Drehzahl n₃
- b) Berechne die Drehzahl des Zwischenrades
- c) Die Achsabstände a₁,a₂und a

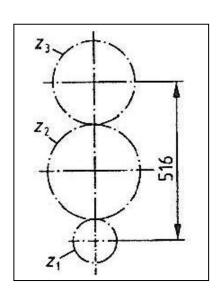
14) Tischverstellung

Ein Tisch einer Maschine kann wie in der Abbildung verstellt werden. Berechnen Sie:

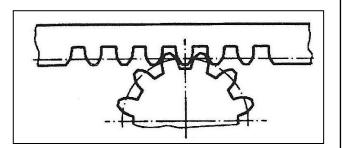

- a) Die Zahl der Kurbelumdrehungen für einen Weg von 36 mm
- b) Den Weg bei einer Umdrehung der Kurbel.

15) Zahnradübersetzung mit Zwischenrad

Berechnen Sie folgende Werte:


- a) Den Teilkreisdurchmesser von Zahnrad 1
- b) Die Zähnezahl z₁
- c) Die Enddrehzahl ne
- d) Das Übersetzungsverhältnis

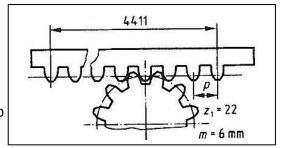
16) Nockenwellenantrieb


Die Nockenwelle eines Viertaktmotors dreht sich halb so schnell wie die Kurbelwelle. Sie wird durch einen Zahntrieb von der Kurbelwelle aus angetrieben. Das Zahnrad z₁ auf der Kurbelwelle besitzt 24 Zähne und einen Modul m=6mm.

- a) Wie groß muss die Zähnezahl z₃ des Zahnrades auf der Nockenwelle sein?
- b) Wie groß muss die Zähnezahl des Zwischenrades sein, damit der Achsabstand 516mm zwischen Kurbelwelle und Nockenwelle überbrückt wird?

17) Zahnstangenantrieb

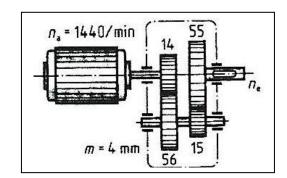
Eine Zahnstange wird durch ein Zahnrad mit z = 32 angetrieben. Modul m = 4mm. Wie groß ist der Hub der Zahnstange bei einer Zahnradumdrehung?


18) Zahnstange und Zahnrad

Ein Zahnrad mit 24 Zähnen mit einem Modul m = 5mm treibt eine Zahnstange. Wie viel Zahnumdrehungen sind nötig, wenn die Zahnstange um 1884 mm bewegt werden soll?

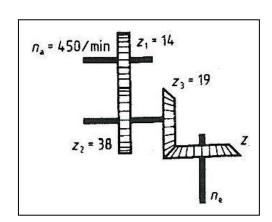
19) Antrieb einer Hobelmaschine

Berechnen Sie:


- a) Die Teilung p der Zahnstange
- b) Die Zähnezahl der Zahnstange
- c) Die Zahl der Umdrehungen des Zahnrades je Hub

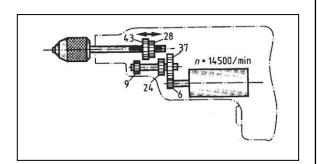
20) Getriebemotor

Für das Getriebe müssen folgende Werte berechnet werden:


- a) Die Drehzahl ne
- b) Die Gesamtübersetzung i
- c) Den Achsabstand

21) Doppelte Übersetzung mit Kegelrad

Folgende Werte müssen berechnet werden:


- a) Die Enddrehzahl ne
- b) Die Einzelübersetzungen
- c) Die Gesamtübersetzung

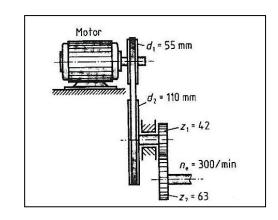
22) Zweigang-Bohrmaschine

Für die abgebildete Bohrmaschine sollen folgende Werte berechnet werden:

- a) Die Drehfrequenzen der Bohrspindel
- b) Die Schnittgeschwindigkeit bei einem Bohrerdurchmesser von 10mm bei niederster Drehfrequenz.

23) Übersetzung

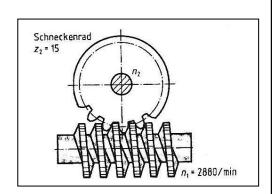
Ein Elektromotor treibt über ein zweistufiges Zahnradgetriebe eine Säge an. Die Motordrehzahl ist 1440 min⁻¹, die Säge hat eine Drehzahl von 192 min⁻¹. Die Zahnräder der ersten Stufe haben $z_1 = 18$ und $z_2 = 45$ Zähne. Das Zahnrad z_4 hat 42 Zähne.


Berechnen Sie:

- a) Die Gesamtübersetzung
- b) Die Einzelübersetzungen
- c) Die Zähnezahl des Zahnrades z₃

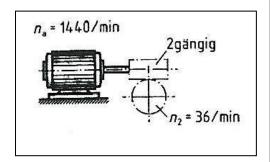
24) Bohrspindelantrieb

Die folgenden Werte müssen berechnet werden:


- a) Die Übersetzung des Riementriebs i₁
- b) Die Übersetzung des Zahntriebs i2
- c) Die Gesamtübersetzung
- d) Die Motordrehzahl na

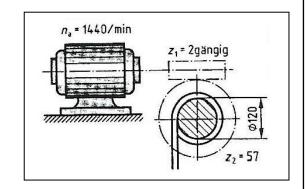
25) Schneckentrieb

Es soll ein Schneckentrieb berechnet werden mit einer Eingängigen Schnecke. Berechnen Sie:


- a) Das Übersetzungsverhältnis
- b) Die Drehzahl des Schneckenrades

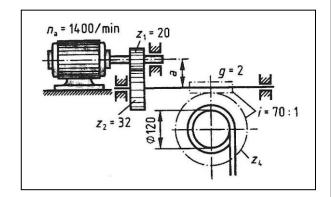
26) Schneckengetriebe

Folgende Werte müssen berechnet werden:

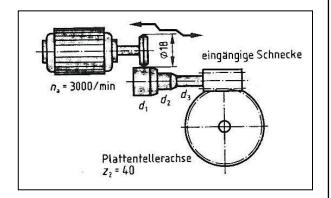

- a) Die Zähnezahl z2
- b) Die Übersetzung iges

27) Aufzugsmaschine

Für die Aufzugsmaschine müssen folgende Werte berechnet werden:

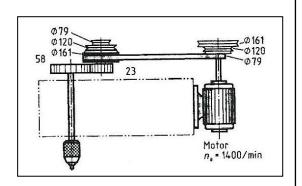

- a) Die Drehzahl der Seiltrommel
- b) Die Seilgeschwindigkeit in $\frac{m}{s}$

28) Seiltrommelantrieb


Für den Seiltrommelantrieb müssen folgende Berechnungen durchgeführt werden:

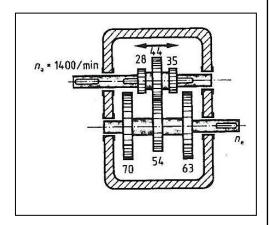
- a) Die Drehfrequenz der Schnecke
- b) Die Drehfrequenz der Seiltrommel
- c) Die Geschwindigkeit des Seiles in $\left[\frac{m}{s}\right]$
- d) Den Achsabstand a bei Modul m = 4mm
- e) Die Zähnezahl des Schneckenrades z₄

29) Reibradantrieb eines Plattenspielers


Berechnen Sie die Durchmesser d_1 , d_2 und d_3 der Zwischenwelle, wenn sich der Plattenteller mit 33, 45 und 78 min⁻¹ drehen soll.

30) Bohrmaschine

Berechnen Sie die folgenden Werte:


- a) Die Drehzahlen der Bohrspindel
- b) Die Schnittgeschwindigkeit eines Bohrers mit d=16mm bei gezeichneter Riemenlage.

31) Schieberadgetriebe

Berechnen Sie:

- a) Die Enddrehzahlen
- b) Den Achsabstand bei Modul m=4mm
- c) Den Kopfkreisdurchmesser d_a für das Zahnrad z_2 =70

