Schrauben-Druck-Feder Berechnung

$$F_1 = 600N$$

$$F_{\scriptscriptstyle 1} = 600N \qquad \qquad D_{\scriptscriptstyle e} = 29,5mm$$

Nach DIN 17223 RM TB 10-1

$$F_2 = 400N$$

$$\Delta s = 12mm$$

Drahtsorte **VD** RM TB 10-2c

$$k_1 = 0.17$$

Durchmesser Draht

$$d \approx k_1 * \sqrt[3]{F_2 * D_e}$$

RM/FS 10-40

$$d \approx 0.17 * \sqrt[3]{600N * 29.5mm}$$

$$d \approx 4,43mm$$

festgelegt

$$d=4,5mm$$

mittlerer Durchmesser

$$D=D_e-d$$

$$D = 29,5mm - 4,5mm$$

$$D = 25mm$$

Federrate

$$R_{soll} = \Delta F / \Delta s$$

$$R_{soll} = (600N - 400N)/12mm$$

$$R_{soll} = 16,7N/mm$$

Anzahl der federnden Windungen

$$n' = \frac{G}{8} * \frac{d^4}{D^3 * R_{(soll)}}$$

RM/FS 10-41

$$n' = \frac{81500N / mm^2}{8} * \frac{(4,5mm)^4}{(25mm)^3 * 16,7N / mm}$$

$$n' \approx 16$$

Festgelegt n= 16,5 (da Lastwechsel)

Gesamtwindungszahl

$$n_t = n + 2$$

RM/FS 10-42

$$n_t = 16,5 + 2$$

$$n_t = 18,5$$

Vorhandene Federrate

$$R_{ist} = \frac{G}{8} * \frac{d^4}{D^3 * n}$$
 RM/FS 10-55

$$R_{ist} = \frac{81500N / mm^2}{8} * \frac{(4,5mm)^4}{(25mm)^3 * 16,5}$$

$$R_{ist} = 16,2N / mm$$

Zul. Abweichung für Maßgenauigkeit

$$d_{\text{max}} = d + A_a$$
 RM/TB 10-2
$$d_{\text{max}} = 4,5mm + 0,045$$

$$d_{\text{max}} = 4,545$$

Blocklänge

$$L_c = n_t * d_{\text{max}}$$
 RM/FS 10-46
 $L_c = 18.5 * 4.545mm$
 $L_c \approx 84mm$

Summe der Mindestabstände zwischen den Windungen

$$S_a = \left[0.0015 * \left(D^2 / d\right) + 0.1 * d\right] * n \quad \text{RM/FS } 10\text{-}43$$

$$S_a = \left[\frac{0.0015 * \left((25mm)^2 / 4.5mm\right)}{+ 0.1 * 4.5mm}\right] * 16.5$$

$$S_a \approx 10.86mm$$

$$S'_{a} = 1.5 * S_{a}$$
 RM/FS 10-44
 $S'_{a} = 1.5 * 10.86mm$
 $S'_{a} \approx 16.5mm$

$$s_2 = F_2 / R_{ist}$$

$$s_2 = 600N / 16,2N / mm$$

$$s_2 \approx 37mm$$

Unbelastete Federlänge

$$L_0 = s_2 + S'_a + L_c$$

 $L_0 = 37mm + 16,5mm + 84mm$
 $L_0 \approx 137mm$

Die Schraubendruckfeder aus Draht DIN 2076-VD 4,5 hat die Abmessungen: D=25mm; n_t =18,5mm; L_0 =137mm;

Formelzeichen	Einheit	Benennung
D_e, D_i	mm	äußerer, innerer Windungsdurchmesser
$D = 0.5(D_e + D_i)$	mm	mittlerer Windungsdurchmesser
D	mm	Drahtdurchmesser
$F, \Delta F = F_2 - F_1$	N	Federkraft zugeordnet Δs
$F_1, F_2,; F_n$	N	Federkraft zugeordnet s_1, s_2, s_n bzw. L_1, L_2, L_n
G	N/mm^2	Schub-(Gleit)-modul
n	1	Anzahl der Windungen
n_t	1	Gesamtwindungszahl
k	1	Beiwert zur Berücksichtigung der Spannungserhöhung
		infolge der Drahtkrümmung
k_1, k_2	1	Beiwert zur angenäherten Vorwahl der Drahtstärke
L_0	mm	Länge der unbelasteten Feder
L_1, L_2	mm	Länge der unbelasteten Feder zugeordnet F ₁ , F ₂
L_{c}	mm	Blocklänge der Feder (alle Windungen liegen
		aneinander)
L_{n}	mm	kleinste zulässige Federlänge
R	N/mm ²	Federrate
S_a, S_a'	mm	Summe der Minderstabstände zwischen den einzelnen
		Federwindungen
$s, s_{\text{max}}, s_1, s_2 \dots$	mm	Federweg maximal $F_1, F_2,$
$\Delta s, = s_2 - s_1$	mm	Hub (Arbeitsweg)

Di = Innerer Windungsdurchmesser (mm)

De = Äußerer Windungsdurchmesser (mm)

F1 = Kraft der Feder vorgespannt (N)

F2 = Kraft der Feder gespannt (N)

s1 = Strecke der Feder vorgespannt (mm)

s2 = Strecke der Feder gespannt (mm)

R = Federrate (N/mm)

L0 = Ungespannte Länge der Feder (mm) L1 = Länge der Feder vorgespannt (mm) L2 = Länge der Feder gespannt (mm)