Kunststoffe: Unterschied zwischen den Versionen

Aus BS-Wiki: Wissen teilen
Wechseln zu: Navigation, Suche
(Experimente mit Kunststoff)
Zeile 105: Zeile 105:
 
== Experimente mit Kunststoff ==
 
== Experimente mit Kunststoff ==
  
=== Experiment 1: Nylonsynthese ===
+
* [[Nylon]]synthese
  
Arbeitsblatt: [[Media:Kunststoffexperimente.pdf ]]
+
=== Unterscheidung von Kunststoffen ===
Video zum Experiment: {{Y|Xy-aYOp5aE0}} Herstellung von Nylon
 
 
 
'''CHEMIKALIEN und SICHERHEITSRATSCHLÄGE'''
 
 
 
 
 
{| {{Tabelle
 
}}
 
 
 
 
 
|- style="background: #DDFFDD;"
 
! Stoff
 
! [[R-Sätze|R-]]&[[S-Sätze|S-Sätze]]
 
!
 
|-
 
! style="background: #FFDDDD;"|Hexamethylendiamin
 
| ''R 21/22-34-37  S (1-2)-22-26-36/37/39-45 E 10''
 
| [[Bild:Pfeil.gif]]  [[Bild:C-300.jpg | 100px]]
 
 
 
|-
 
! style="background: #FFDDDD;"|Adipinsäuredichlorid
 
| ''R 34  S 26-36/37/39-45 E 15-2''
 
| [[Bild:Pfeil.gif]]   [[Bild:C-300.jpg | 100px ]]
 
|-
 
! style="background: #FFDDDD;"|[[Hexan]]
 
| ''R 11-38-48/20-51/53-62-65-67 
 
S (2)-16-22-24-47 E 10''
 
| [[Bild:Pfeil.gif]]   [[Bild:Xn-300.jpg | 100px]] [[Bild:F-300.jpg | 100px]]  [[Bild:N-300.jpg | 100px]]
 
 
 
|-
 
! style="background: #FFDDDD;"|[[Phenolphthalein|Phenolphthaleinlösung]]
 
| ''R 40  S 36-37''
 
| [[Bild:Pfeil.gif]]   [[Bild:Xn-300.jpg | 100px]]
 
 
 
|-
 
! style="background: #FFDDDD;"|Destilliertes Wasser
 
| --------
 
| --------
 
|}
 
 
 
Dieses Experiment sollte mit Schutzbrille und -handschuhen durchgeführt werden und kann, zur Schonung der Schüler, da ein ziemlich strenger Geruch entsteht, unter einem Abzug gemacht werden. Die Abfälle müssen artengemäß korrekt entsorgt werden, da sie ein Umweltrisiko darstellen können.
 
 
 
 
 
'''MATERIAL'''
 
 
3 Bechergläser (100ml), Kleiner Trichter,
 
zwei Glasstäbe, Pinzette, Akku-Schrauber, Messer und Einwegspritze
 
 
 
 
 
[[Bild:Materialien_nylon.jpg]]
 
 
 
 
 
'''DURCHFÜHRUNG'''
 
 
 
Man spannt den Glasstab in einen Akku-Schrauber und stellt diesen so neben eines der Bechergläser, dass sich der Glasstab über diesem befindet.
 
Nun setzt man in zwei Bechergläsern folgende Lösungen an:
 
 
 
 
 
Füllt 50mL Hexan in das erste Becherglas und gebt z.B. mittels Einwegspritze 2 ml Adepinsäurechlorid hinzu. 
 
 
 
[[Bild:Mischen_von_loesung_1.jpg]]
 
 
 
 
 
Füllt nun 50mL Wasser in das zweite Becherglas und gebt Hexamethlylendamin hinzu. Das Hexamethlylendamin ist bei Raumtemperatur im Festzustand und hat eine eisähnliche Konsistenz, es muss daher normalerweise mit einem Messer leicht zerstoßen werden, um es zu benutzen.
 
 
 
[[Bild:Stößeln_feststoff.jpg]]  [[Bild:Mischen_von_loesung_2.jpg]]
 
 
 
 
 
Nun müssen noch einige Tropfen [[Phenolphthalein]] (zur späteren besseren Unterscheidung der beiden Lösungen) hinzugegeben werden
 
 
 
Zur besseren Lösung der Stoffe in beiden Bechergläsern, sollte man sie jeweils mit einem Rührstab vermischen
 
 
 
[[Bild:Rühren_loesung_2.jpg]]
 
 
 
 
 
 
 
Kurz gefasst:
 
 
 
{| {{Tabelle
 
}}
 
 
 
! Lösung 1
 
! Lösung 2
 
|-
 
 
 
| 2 ml Adipinsäuredichlorid
 
| 2 g Hexamethylendiamin
 
|-
 
 
 
| in 50 ml Hexan
 
| in 50 ml Wasser
 
|-
 
 
 
|
 
| Einige Tropfen Phenolphthalein
 
 
 
|}
 
 
 
Anschließend gibt man die Lösung 2 in das dritte Becherglas.
 
Nun schichtet man langsam und vorsichtig (die Lösungen dürfen sich nicht vermischen) die Lösung 1 mit einem Trichter auf Lösung 2 in das Becherglas.
 
Es bildet sich zwischen den Lösungen eine dünne Schicht, die man nun mit der Pinzette aus dem Glas ziehen kann, um den daraus entstandenen Faden um das Glasstäbchen des Schraubers zu wickeln. Nun kann man mit dem Schrauber vorsichtig weiteren Faden aus den Flüssigkeiten gewinnen. 
 
 
 
 
 
[[Bild:faden_herstellung.jpg]]
 
 
 
 
 
'''Auswertung'''
 
 
 
Adipinsäuredichlorid und Hexamethylendiamin werden durch die Lösemittel Hexan und Wasser gelöst und treffen an der Grenzschicht aufeinander, es kommt zu einer Polykondensationsreaktion zwischen dem Adipinsäuredichlorid und dem Hexamethylendiamin. Nun spaltet sich Chlorwasserstoff ab und es entsteht der Polyester Nylon, der verschiedene Kettenlängen aufweist.
 
 
 
[[Bild:Nylonsynthese.gif]]
 
 
 
 
 
=== Experiment 2: Unterscheidung von Kunststoffen ===
 
  
  

Version vom 16. August 2014, 11:08 Uhr

Kunststoffe
vernetzte Artikel
Elastomere Thermoplaste

Übersicht

„Als Kunststoff (umgangssprachlich: Plastik oder Plaste) bezeichnet man einen Festkörper, dessen Grundbestandteil synthetisch oder halbsynthetisch erzeugte Polymere mit organischen Gruppen sind.“ (Def. Wikipedia)

Kunststoffe.jpg

Kunststoffe allgemein

  • Kunststoffe werden entweder vollsynthetisch (auf der Basis von Erdölprodukten) oder durch Umwandlung von hochmolekularen Naturstoffen (Proteine, Cellulose) hergestellt
  • Ein Werkstoff aus Millionen sehr langer, ineinander verschlungener Molekülketten, die aus sich stets wiederholenden Grundeinheiten (Monomere) zusammengesetzt sind
  • Sie haben eine geringe Dichte, die mit maximal 2,2g/cm³ nur etwa halb so groß wie die Dichte von Porzellan oder Glas ist
  • Sie gehören deshalb zu den leichtesten Werkstoffen
  • Sie zeigen ein gutes Isoliervermögen
  • Ihre Eigenschaften kann man größtenteils, durch die Wahl der Ausgangsstoffe, für die Zielbestimmung festlegen

Hauptgruppen

Man unterscheidet die große Anzahl von Kunststoffen mit verschiedenen Eigenschaften in der Regel durch ihr Verhalten beim Erwärmen, welches sich durch die Struktur erklären lässt.

Hierbei teilt man die Kunststoffe in 3 verschiedene Unterarten:

Die Struktur der Stoffe könnt ihr hier sehen

Ein Beispiel für Thermoplaste: PET Flaschen

Thermoplaste

  • bestehen aus unvernetzten, fadenförmigen oder wenig verzweigten Makromolekülen
  • beim Erwärmen werden sie leicht formbar
  • gehen in einem großen Temperaturintervall vom weichen in den flüssigen Zustand über
  • Beispiele sind: Polyethylen, Polyvinylchlorid und Polystyrol


Ein Beispiel für Duroplaste: die Steckdose

Duroplaste

  • ihre Schmelztemperatur liegt über der Zersetzungstemperatur
  • daher: beim Erhitzen verkohlen sie oder zersetzen sich
  • bestehen aus stark vernetzten Makromolekülen
  • sind relativ hart und spröde
  • typisches Beispiel ist Polycarbonat (CDs)


Ein Beispiel für Elastomere: ein Gummiball

Elastomere

  • sind schwach vernetzte Makromoleküle
  • lassen sich durch Zug und Druck verformen, doch kehren Dank ihrer hohen Elastizität immer in die Ursprungsform zurück
  • dehnen sich bei Kälte aus
  • typisches Beispiel ist Silikon

Herstellung von Kunststoffen

 Media:Herstellung_von_Kunststoffen_Audio.doc

Bei der Synthese von Kunststoffen geht man allgemein von kleinen Molekülen aus. Diese Monomere sind die Bausteine für die Bildung kettenförmiger oder netzförmiger Makromoleküle. Die Monomere müssen Mehrfachbindungen oder mindestens zwei funktionelle Gruppen besitzen. Ringförmige Monomere können durch Ringöffnung Makromolekühle bilden. Die Verknüpfung zu Polymeren kann je nach Art der Monomere durch 3 verschiedenartige Polyreaktionen erfolgen:

Recycling

Bei Kunststoffen besteht heutzutage ein großes Umweltproblem, da diese Stoffe in der Regel verrottungsfest sind. Daher belasten sie die immer kleiner werdenden Deponieräume. Weiterhin besitzen diese Stoffe auch nach Benutzung einen hohen Energie- und Rohstoffgehalt. Daher versucht man, diese Stoffe zu recyceln. Heutzutage verwandet man normalerweise drei verschiedene Methoden dazu:

Werkstoffliches Recycling

  • Alte Kunststoffabfälle werden sortiert, zerkleinert und geschmolzen
  • Diese „Schmelze“ wird zu der laufenden Kunststoffproduktion zugegeben.

Problematik: Bei verschmutzen und gemischten Ks.abfällen nur begrenzt möglich, da man sortenrein arbeiten muss um funktionstätige Kunststoffe herzustellen. Das Sortieren ist aufwendig und teuer und es findet eine Qualitätsminderung des Endproduktes statt.

Rohstoffliches Recycling

  • Makromoleküle werden durch Hitze (Cracken) gespalten und so in niedermolekulare Produkte zerlegt.
  • Diese Produkte könne weiterverarbeitet werden
  • Es fallen keine Sortierkosten an

Problematik: Rohstoffliche Recyclingverfahren verlangen hohen Energieeinsatz und verursachen so hohe Kosten. Die gebildeten Produkte müssen aufwendig getrennt werden. Die erzeugten Produkte müssen neu synthetisiert werden

Thermische Verwertung

  • Verbrennung des Kunststoffabfalles
  • Die dabei entstehende Energie wird weiter genutzt

Problematik: Keine stoffliche Weiterverwertung. Schadstoffemissionen treten auf. Aufwendige Abgasreinigungsanlagen sind notwendig.

Die allgemeine Recyclingeuphorie von Kunststoffen ist vorbei. Die technischen Schwierigkeiten sind zu groß, und die Produkte aus Rezyklat zu schlecht.

Experimente mit Kunststoff

Unterscheidung von Kunststoffen

Aufgabe

Es soll herausgefunden werden, aus welchem Kunststoff zwei unterschiedliche Donald-Duck-Figuren hergestellt wurden und eine begründete Auswahl getroffen werden.


MATERIAL

2 Donald-Figuren, Materialien aus den Schränken des Chemieraumes

Donald figuren.jpg


DURCHFÜHRUNG

Es sollte die Kunststoffart zwei verschiedener Kunststofffiguren bestimmt werden. Dabei standen den Schülern eine Tabelle und die Materialien aus den Schränken bzw. die vom Lehrer bereitgestellten Materialien zure Verfügung. Einzige Prämisse war, dass die Figuren bei dem Versuch nicht beschädigt werden durften.

Unterschieden werden sollten:

PVC und Polystyrol


Dies war den Schülern bekannt:

Bei der Tabelle handelte es sich um eine Zusammenfassung mehrerer Kunststoffe und einiger ihrer Eigenschaften wie Bruchfestigkeit, Dichte, Brennbarkeit und Schmelzbereich.

Auswertung bzw. Beobachtung

Die Schüler sollten darauf kommen, dass zur Unterscheidung der beiden Figuren lediglich die Dichte gebraucht wurde, da sich diese bei beiden Kunststoffen unterschied und bei einer der Figuren dazu führte, dass sie in einem Becherglas mit Wasser auftrieb (Polystyrol). So konnte eine einfache Art der Sortentrennung bei Kunststoffen selbst praktisch von den Schülern durchgeführt werden, ohne dass die Figuren zerstört werden mussten.

Donald figuren unter wasser.jpg

weitere Experimente

Im Chemiebuch ...
findest Du weitere Informationen
zum Thema Kunststoffe:
Chemie FOS-T

auf Seite
224

Chemie heute

auf Seite
298

Elemente Chemie

auf Seite
305

Übungen

Chemiebuch

Weblinks